庫存狀況
「香港二樓書店」讓您 愛上二樓●愛上書
我的購物車 加入會員 會員中心 常見問題 首頁
「香港二樓書店」邁向第一華人書店
登入 客戶評價 whatsapp 常見問題 加入會員 會員專區 現貨書籍 現貨書籍 購物流程 運費計算 我的購物車 聯絡我們 返回首頁
香港二樓書店 > 今日好書推介
二樓書籍分類
 
Scikit-learn 詳解與企業應用:機器學習最佳入門與實戰

Scikit-learn

沒有庫存
訂購需時10-14天
9786267273210
陳昭明
深智數位
2023年3月20日
293.00  元
HK$ 249.05  






語言: 繁體中文
頁數: 480


[ 尚未分類 ]








★★★★★【機器學習唯一指定】★★★★★
☆☆☆☆☆【入門】+【實戰】☆☆☆☆☆

AI 專業大師 陳昭明 老師全新力作,帶你一次到位,完整學習Scikit-learn!


以Scikit-learn套件為主體,介紹各類的演算法,同時提供大量應用實例,全面性的掌握理論、技術與實作,為機器學習入門者的最佳夥伴!
★詳細的程式說明
★遵循完整的機器學習開發流程
★資料的探索、清理、特徵工程、模型訓練、評估、參數調校到最終的部署

本書主要的特點
1. 以完整的機器學習開發流程角度出發。
2. 每一個演算法都包括原理、自行開發、Scikit-learn函數用法,最後再附應用實例。
3. 以「統計�數學」為出發點,介紹機器學習必備的數理基礎,使用大量圖解,並以程式開發加深掌握演算法原理,增進學習樂趣。
4. 完整實用的範例程式及各種演算法的延伸應用,能在企業內應用自如。


第 1 章 Scikit-learn入門
1-1 Scikit-learn簡介
1-2 學習地圖
1-3 開發環境安裝
1-4 Jupyter Notebook
1-5 撰寫第一支程式
1-6 本章小結
1-7 延伸練習

第 2 章 資料前置處理
2-1 資料源(Data Sources)
2-2 Scikit-learn內建資料集
2-3 資料清理
2-4 遺失值(Missing value)處理
2-5 離群值(Outlier)處理
2-6 類別變數編碼
2-7 其他資料清理
2-8 本章小結
2-9 延伸練習

第 3 章 資料探索與分析
3-1 資料探索的方式
3-2 描述統計量(Descriptive statistics)
3-3 統計圖
3-4 實務作法
3-5 本章小結
3-6 延伸閱讀

第 4 章 特徵工程
4-1 特徵縮放(Feature Scaling)
4-2 特徵選取(Feature Selection)
4-3 特徵萃取(Feature Extraction)
4-4 特徵生成(Feature Generation)
4-5 小結
4-6 延伸練習

第 5 章 迴歸
5-1 線性迴歸(Linear regression)
5-2 非線性迴歸(Non-linear regression)
5-3 迴歸的假設與缺點
5-4 時間序列分析(Time Series Analysis)
5-5 過度擬合(Overfitting)與正則化(Regularization)
5-6 偏差(Bias)與變異(Variance)
5-7 本章小結
5-8 延伸練習

第 6 章 分類演算法(一)
6-1 羅吉斯迴歸(Logistic Regression)
6-2 最近鄰(K nearest neighbor)
6-3 單純貝氏分類法(Naive Bayes Classifier)
6-4 本章小結
6-5 延伸練習

第 7 章 分類演算法(二)
7-1 支援向量機(Support Vector Machine)
7-2 決策樹(Decision Tree)
7-3 隨機森林(Random Forest)
7-4 ExtraTreesClassifier
7-5 本章小結
7-6 延伸練習

第 8 章 模型效能評估與調校
8-1 模型效能評估
8-2 效能衡量指標(Performance Metrics)
8-3 ROC/AUC
8-4 詐欺偵測(Fraud Detection)個案研究
8-5 本章小結
8-6 延伸練習

第 9 章 集群
9-1 K-Means Clustering
9-2 階層集群(Hierarchical Clustering)
9-3 以密度為基礎的集群(DBSCAN)
9-4 高斯混合模型(Gaussian Mixture Models)
9-5 影像壓縮(Image Compression)
9-6 客戶區隔(Customer Segmentation)
9-7 本章小結
9-8 延伸練習

第 10 章 整體學習
10-1 整體學習概念說明
10-2 多數決(Majority Voting)
10-3 裝袋法(Bagging)
10-4 強化法(Boosting)
10-5 堆疊(Stacking)
10-6 本章小結
10-7 延伸練習

第 11 章 其他課題
11-1 半監督式學習(Semi-supervised learning)
11-2 可解釋的AI(Explainable AI, XAI)
11-3 機器學習系統架構
11-4 結語




其 他 著 作