庫存狀況
「香港二樓書店」讓您 愛上二樓●愛上書
我的購物車 加入會員 會員中心 常見問題 首頁
「香港二樓書店」邁向第一華人書店
登入 客戶評價 whatsapp 常見問題 加入會員 會員專區 現貨書籍 現貨書籍 購物流程 運費計算 我的購物車 聯絡我們 返回首頁
香港二樓書店 > 今日好書推介
   
二樓書籍分類
 
Mathemagical Cruise

Mathemagical

沒有庫存
訂購需時10-14天
9789863507543
Liong-shin Hahn(韓良信)
國立臺灣大學出版中心
2023年8月17日
267.00  元
HK$ 240.3  






ISBN:9789863507543
  • 叢書系列:教科書
  • 規格:平裝 / 248頁 / 17 x 23 x 1.3 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣
    教科書


  • 自然科普 > 數學 > 幾何











      Mathemagical Cruise is not a mere collection of fun problems with clever solutions. It offers shining examples of how to approach problem solving.?

    ?

      Each chapter is independent and can be read in any order by everyone with a basic background in high school mathematics. Some highlights of the excursion are:

    ?

      ● Slick Solutions of Double Sequence, Klarner’s Puzzle, Cube Tour, etc.

      ● Easy Proofs of Bolyai-Gerwin Theorem, Problem by P. Erdos and more

      ● New Year Puzzles (Especially, Year 2021 & 2022)

      ● Twelve Points on the Nine-Point Circle

      ● Whats a Point in a Square?

      ● Five Circles through a 5x6 Grid

      ● Generalization of Cevas Theorem

      ● Easy Approach to Coaxal Circles

      ● Inversion and its Applications

      ● Lattice Integer Triangles

      ● Isbells Problem

      ● Sequence of Theorems of Simson & Cantor

      ● Miscellaneous Problems with Solutions

     

      By cruising through these treasure islands, the reader will traverse mathematical boundaries. Be adventurous and inspired to explore the seas beyond the horizon.



     





    Preface

    1 Puzzles

    1.1 Parity

    1.2 Double Sequences

    1.3 15-Puzzle

    1.4 Klarner’s Puzzle

    1.5 A Cube Tour

    1.6 Safe Cracking

    1.7 Tilings

    1.8 A ProblemonWeighted Trees



    2 The Bolyai-Gerwin Theorem

    2.1 Baby Pythagoras

    2.2 A Triangular Carpet

    2.3 The Bolyai-Gerwin Theorem



    3 New Year Puzzles

    3.1 New Year Puzzle 2014

    3.2 New Year Puzzle 2015

    3.3 Heron’s Formula Revisited

    3.4 New Year Puzzle 2016

    3.5 New Year Puzzle 2017

    3.6 New Year Puzzle 2018

    3.7 New Year Puzzle 2019

    3.8 New Year Puzzle 2020

    3.9 New Year Puzzle 2021

    3.10 New Year Puzzle 2022

    3.11 New Year Puzzle 2023

    3.12 New Year Puzzle 2024

    3.13 New Year Puzzle 2025



    4 In Remembrance of Professor Ross Honsberger

    4.1 The Bulging Semicircle

    4.2 The Last Digits of 79999

    4.3 A Diophantine Equation

    4.4 Sumof the Digits

    4.5 Gaps between Consecutive Primes

    4.6 Triangle Numbers That Are Perfect Squares

    4.7 A Problemby Erd?s



    5 Triangles

    5.1 Medians

    5.2 Orthocenter and Circumcenter

    5.3 Incenter and Excenters



    6 From the Desks of My Friends

    6.1 FromDean Ballard

    6.1.1 What’s a Point in a Square?

    6.1.2 Wythoff’s Game

    6.1.3 The Game of Nim

    6.2 From Tien-Sheng Hsu



    7 How Many Interior Right Angles Can a Polygon Have?



    8 Ceva and Menelaus Revisited



    9 Circles


    9.1 Preliminaries

    9.2 Radical Axes

    9.3 Coaxal Circles

    9.4 Inversion

    9.5 Theorems of Ptolemy, Steiner and Poncelet

    9.6 An Old Japanese Theorem

    9.7 With Coordinates



    10 Lattice Points

    10.1 The Schinzel Theorem

    10.2 Lattice Integer Triangles

    10.3 The Isbell Problem



    11 On the Theorems of Simson and of Cantor



    Appendix A Problems

    Appendix B Solutions and Hints





    Preface




    其 他 著 作