.作者庫蘭特教授創辦的紐約大學數學研究所(Courant Institute of Mathematical Sciences)今年再度獲得US News選為排名第一位的應用數學類研究所。
.至今仍在亞馬遜網路書店獲得4.5顆星好評
《數學是什麼?》(What is Mathematics?) 是一本為初學者和學者、學生和老師、哲學家,和工程師而寫的數學名著。自1941年出版以來就得到包括愛因斯坦、赫曼.外爾 (Herman Weyl) 等一代科學大師在內的一致推崇。兩位原作者如今都已辭世,不過後繼有人。1996年在著名數學家伊恩.史都華手中把原著中多個相關的數學主題帶到切合當前的發展水平,因而有現在的第二版。通過平易近人,引人入勝的描述,這部閃爍出兩代作者才華的鉅著,把「反映出人類積極的意志,深思熟慮的推理,以及在美學上盡善盡美的祈求」的數學世界,栩栩如生地呈現在我們眼前。《數學是什麼?》文情並茂地給我們報導了一個非凡的故事,為我們對數學的瞭解打開了一扇窗。
作者簡介
瑞赫德.庫蘭特(Richard Courant, 1888 ~ 1972)
出生於德國,哥庭根大學數學研究所創建人,1920年至1933年期間任所長, 他在函數論和變分法方面的發展做出貢獻。在研究所期間與當時最負盛名的德國數學家希爾伯特(David Hilbert, 1862~1943)建立密切的合作關係,兩人合寫了著名的《Methods of Mathematical Physics》一書,將數學分析運用到物理學。1933年納粹興起,他逃往美國,翌年任紐約大學數學教授,並將他在哥庭根大學的經驗在紐約大學複製。在他的領導下建立了美國最有聲望的應用數學研究所之一。1958年他退休時為了紀念他,研究所以他命名(Courant Institute of Mathematical Sciences)。他的另一本名著《Differential and Integral Calculus》也被譽為是現代在微積分方面的最佳著作之一。
是英國英格蘭渥威克大學(University of Warwick)數學教授,在推動大眾對科學的認識方面做出許多貢獻。1995年獲得英國皇家學會頒贈法拉第獎章。他的著作廣泛,其中尤以《Nature’s Numbers》(大自然的數學遊戲,天下出版)、《Does God Play Dice?》(上帝擲骰子嗎?八方出版),以及被他視為可作為本書姊妹篇的《From Here to Infinity》為大家所熟知。他同時為科學雜誌《Scientific American》(科學人)撰寫 Mathematical Recreation 專欄。
讓我們由書中擷取幾例,先來看繆畢烏斯帶。德國數學家繆畢烏斯(August Ferdinand Mobius,1790~1868)在其一篇關於「單側」表面的學術報告中,提出一些直至今日仍會令初識者大為驚奇的論證。所謂的繆畢烏斯帶,它是把一條細長的長方形帶子的一端扭轉到另一側之後,同另一端貼在一起而形成。第一,常見的雙側表面是由細長形帶子沒有經過扭轉而把它的兩端貼起來形成的,而繆畢烏斯帶只有單側面,一隻沿著帶子而始終維持在帶子中間線爬行的小蟲將會左右倒置地回到它原來的出發點;第二,如果沿著繆畢烏斯帶的中線剪開,會發現它依舊是一條完整的帶子。就如書中作者所言,「對於任何一個不熟悉繆畢烏斯帶的人來說,很難預知這種變化,它與我們在直覺上認為『應該』會出現的事情竟是如此地背道而馳。」我們可以藉由閱讀這本書的第四、五章之幾何篇章,來加強直覺,抓住事物的可構性,或說是「開啟幾何之眼」。
數學可帶給人驚奇感受。「兩個看來是毫不相干的數學觀念事實上竟然如此緊密連繫」,多奇妙!在「利用對數功能可詮述質數分布的平均變化」這個發現上,已經讓我們對這件事留下深刻印象;但還可以再添一筆——高斯(Carl Friedrich Gauss,1777~1855,德國)的「最小平方法」(method of least squares)。從一切有可能出現的測量值中選出一個可作為u的最優值,就是它足以使各個偏差的平方值之和儘可能成為最小,這個作為u的最優值恰好就是算術平均數。上面這個事實可經由最小平方法確認,而較為複雜的問題,例如,假定我們測量出來的各點並非剛好是在一條直線上,我們該如何把一條最適合於這些已被測得的n個點的直線描繪出來?還是最小平方法發揮效用。每當問題注定要從稍為不一致的測量值中,擇定一個貌似有理的結果,「最小平方法」就位居指導原則的地位,當然它也許會被基於相同推理的其它變體來替代。
微積分的魅力不只於此。牛頓(Sir Isaac Newton,1642~1727,英國)和萊布尼茲(Gottfried Wilhelm Leibniz,1646~1716,德國)對微積分的長時期演化,扮演了具有決定性的角色。誠如書中作者所言,牛頓與萊布尼茲的巨大功勞乃在於他們清楚確認到下述兩個問題彼此之間的密切聯繫。古老的求取面積與十七世紀時才表述之導數(萊布尼茲稱之為「微商」),是微積分的兩個基本問題,這兩個看來似乎相當分岐的概念之間,存在一個不可分割的相互聯繫性。萊布尼茲和牛頓率先清楚地辨識出此點,繼而開發出精準有效的微積分基本定理(fundamental theorem of the calculus),於是在他們手中,把兩者統一起來的各種新方法遂成為科學上強大的利器。