庫存狀況
「香港二樓書店」讓您 愛上二樓●愛上書
我的購物車 加入會員 會員中心 常見問題 首頁
「香港二樓書店」邁向第一華人書店
登入 客戶評價 whatsapp 常見問題 加入會員 會員專區 現貨書籍 現貨書籍 購物流程 運費計算 我的購物車 聯絡我們 返回首頁
香港二樓書店 > 今日好書推介
   
二樓書籍分類
 
這才是數學:從不知道到想知道的探索之旅

這才是數學:從不知道到想知道的探索之旅

沒有庫存
訂購需時10-14天
9789866031663
保羅.拉克哈特
畢馨云
經濟新潮社
2015年3月12日
133.00  元
HK$ 113.05
省下 $19.95
 
二樓書卷使用細則 二樓書卷使用細則





ISBN:9789866031663
  • 叢書系列:自由學習
  • 規格:平裝 / 416頁 / 14.8 x 21 cm / 普通級
    自由學習


  • 自然科普 > 數學 > 趣味數學


















    暢銷書《一個數學家的嘆息》作者的最新力作!

    還原數學的本質,就是一種好奇、探索、發現的過程。





    推薦序 從「測量」看數學與數學之美 游森棚

    推薦序 去掉條條框框,看見數學的本質 洪萬生



    真實與想像

    漫談數學問題



    上篇 大小與形狀

    我們一開始先談抽象幾何圖形;

    對稱鋪磚和角度;

    縮放和比例;

    長度、面積與體積;

    窮盡法及其結果;

    多邊形和三角學;

    圓錐曲線與射影幾何;

    力學曲線。



    下篇 時間與空間

    這一篇涵蓋了數學上的運動;

    以數值關係描述運動;

    向量表示法和力學相對性;

    速度;

    微分法及其各式各樣的應用;

    最後是給讀者的一點鼓勵。



    英中譯名對照





    〔推薦序〕

    從「測量」看數學與數學之美

    游森棚�任教於國立台灣師範大學與空軍官校




      測量是人類的本能:到那棵樹有多遠?有幾頭獅子?我有多高多胖?測量也是人類的挑戰:那個池塘面積有多大?海岸線有多長?下一次的日蝕是什麼時候?



      讀者手上的這本書《這才是數學》,原文的書名就是「測量」(Measurement)。這本書用「測量」為經,帶領讀者穿越時光隧道,縱覽了從古希臘時代開始,一路到微積分的數學。



      這本書的作者Paul Lockhart曾是幾何學家,寫過幾篇相當好的學術論文,並且曾在名校布朗大學任教。2000年起他離開學術界,到紐約布魯克林的Saint Anns中學教書。他感嘆美國中小學的數學教學現場光怪陸離,根本摧毀了學生對數學的熱情與想像力,於是寫下了一份手稿「一位數學家的嘆息」(A Mathematician’s Lament),這份有名的手稿先在數學圈中流傳,而後於2009年出版。這本《Measurement》是他最新的,也是談數學與數學教育的科普書籍。



      這是一本相當特別的數學科普書。不少數學科普書籍因為讀者程度的設定,常常花大量的時間在打轉:或者編造數學問題的情境;或者鋪陳數學家的生平,怪癖,或軼事。但是這些故事通常和「數學」本身沒有關係。這本書不然。作者非常明白地告訴讀者,他只談數學:數學的發現,數學的內容,數學為何美麗。



      作者開宗明義說,數學世界只存在於心智中,點就是一個點,線就是一條完美的線,圓就是一個完美的圓,不像現實世界充滿了近似值。在這個世界中,你可以盡情玩耍,觀察後發現一些現象,然後做出猜測,然後證明,這一路的過程正是數學迷人的原因。更神奇的是,一旦論證是對的,所有的發現就是斬釘截鐵,就變成絕對正確的真理:三角形的三條中線就是會交於一點,直角三角形的兩短邊的平方和就剛好等於斜邊的平方和。作者雖未言說,但這正是柏拉圖的思想:在理型世界中,各種關係是永恆不變的,是絕對的真理。



      作者帶領我們從簡單的形狀開始測量,線段的長度,三角形的角度和,多邊形與多面體。為了測量正方形的對角線就出現了無理數。為了測量圓周長出現了超越數。接著是面積,體積,開始有代數,三角,圓錐曲線和射影幾何。把曲線看成是質點的運動軌跡,就出現了函數,速度,微分,積分。最終停在指數與對數。



      數學的發展一日千里,當代數學百家爭鳴,不僅有抽象數學的理論高度,更有應用數學的興起,與跨領域的整合。本書的題材從規則形狀的測量一路談到微積分,取材相當豐富,卻也是相當古典的,事實上,這離當代的數學的研究對象已經非常遙遠了。但是正因為這些是古典題材,更足以讓我們依循著古人的發現腳步,一窺數學的堂奧。但本書不掉書袋,娓娓道來,雖沒有太多人名和歷史故事,實際上卻橫跨了數學史數千年的發展,份量已經足以開一門數學史的課程了。



      我極佩服作者能夠信手拈來,用非常直觀的方法把許多概念講得清清楚楚,用簡單的例子說明重要概念是怎麼成形的,以及一些根本的結果為什麼會是對的。比如說:怎麼對小學生解釋為什麼三角形的面積剛好是底乘以高的一半;怎麼對國中生解釋圓的面積是圓周率乘以半徑的平方;為什麼圓,橢圓,拋物線,雙曲線在射影之下是同一件事;微分公式是怎麼來的。有好多個結果解釋得非常漂亮,我自己都眼睛一亮。



      作者堅持只談數學本身,這也是不少數學家面對數學教育的堅持,輔助的教學方法不能反客為主。此外,正如同欣賞音樂或文學要先能理解音樂或文學的語言:要能欣賞數學,也需要理解數學的語言,否則終究是碰不到核心。作者期待讀者也一起「動手做」,才能體會由發現到證明的數學之美,於是文中穿插了許多有趣的習題 (有些還不太容易)。以上這些,對於讀者都是不小的挑戰。



      但無論如何,作者努力向我們傳達他的信念:數學是來自於觀察,發現,證明的心智活動,它的的美麗來自自身,來自過程中滿溢的想像與創造,以及對簡單真理的渴望。



      數學是科學的根本,牽涉到邏輯思考,抽象力,想像力,觀察與創造或審美等等最基本重要的素養。但是台灣的教學現場上,教師常常急著呈現結果,而忘了帶領學生探索概念的形成,以及體會發現的樂趣。不少學生以為數學就是背公式解類似題,完全無法體會有何樂趣可言。更糟糕的是這就磨掉了觀察力與創造力,以及主動探索的能力——這真是令人遺憾的事。希望這本書的出版,能帶給第一線的數學教師們一些鼓舞與啟示。



    〔推薦序〕

    去掉條條框框,看見數學的本質

    洪萬生�國立台灣師範大學數學系退休教授




      何謂數學?保羅?拉克哈特現身說法,利用本書來解說他的答案:數學是一門研究模式的科學(science of pattern)。



      不過,想要回答此一問題,我們也可以簡短回顧這種知識活動的歷史軌跡。考察古埃及、巴比倫乃至中國的數學的發展歷程,到公元前500年左右,所謂數學是指與數目相關的一種學問。以中國漢代數學經典《九章算術》為例,數學所指涉的活動幾乎都以「算術」為主。顯然,它的內容以實用為依歸,至於方法則依循「食譜」的特色:「對一個數目這樣做、那樣做,那麼,你將會得到答案。」



      從大約公元前500年到公元300年間,是希臘數學的輝煌時期。古希臘的數學家主要關心幾何學,而且訴諸於嚴密推理與形式證明,以建立牢固的數學知識結構。因此,對於古希臘人而言,除了研究數目之外,數學主要是有關形狀的一門學問。



      儘管如此,到十七世紀為止,數學大都侷限於計算、度量和形狀之描述的靜態問題。相對地,牛頓與萊布尼茲在各自獨立發明的微積分這一門學問中,引進處理運動和變化的方法之後,數學家終於可以研究行星的運行、地球的落體運動、液體的流動、氣體的擴散、電力和磁力、飛行,乃至於動植物的生長等等自然現象。因此,在這兩位發明微積分的偉大數學家之後,數學變成了研究數目、形狀、運動、變化以及空間的一門學問。



      不過,大約十八世紀中葉之後,有感於微積分的無遠弗屆威力,數學家著手瞭解其背後的原因究竟,從而對數學知識本身產生了遞增的興趣。於是,古希臘形式證明的傳統,捲土重來掌握了優勢。因此,到了十九世紀末為止,數學已經成為有關數目、形狀、運動、變化、空間、以及研究數學的工具的一門學問了。



      在最近的四十年間,數學家對於「何謂數學」之說法,則一如前述:數學是研究模式的一門科學。誠如拉克哈特指出,數學家的職責就是探索或檢視抽象的模式。這些模式可以是真實存在或想像的、視覺性或心智性的、靜態或動態的、定性或定量的、純粹功利或有點超乎娛樂趣味的。它們可以源自我們的周遭世界,或者源自心靈的內部運作。不同種類的模式當然引出不同的數學分支,譬如說吧,幾何學研究形狀的模式;微積分允許我們處理運動的模式。而這兩種模式,正是拉克哈特在本書中現身說法之主要依據。



      針對幾何學研究,拉克哈特強調它「與其說是關於形狀本身,不如說是關於定義形狀的遣詞用字模式(vocal pattern)。幾何的中心問題,是抓住這些模式並做出量度——這些數本身,也必須具有遣詞用字模式。」至於在本書下篇中,作者引進微(積)分方法,部分原因顯然出自對比(量度)方法論的考量。請看拉克哈特如何說明:「我總是喜歡拿古代研究幾何量度的方式,來和近代的研究方式比較一下。希臘古典想法是把量度按住,然後做分割;十七世紀的方法則是任它四處跑,觀察它的變化。」儘管如此,他在說明如何「量度」圓面積時,還是指出古典方法(如窮盡法)的深刻動人:「我們做的近似值並不只是少少幾個,而是無窮多個。我們其實做了一連串無止境的近似值,一次比一次接近,而從這些近似值可以看出一種模式,告訴我們最終會趨向什麼結果。換句話說,透露出某種模式的無窮多個『謊言』(lies),竟能告訴我們真理。」



      對於拉克哈特來說,模式之為用大矣!在說明餘弦定律針對銳角、直角與鈍角三角形都有效時,拉克哈特強調:「要讓模式來決定我們對於意義的選擇。數學這門學問就是圍繞這個主題;我們甚至可以說,這是這門藝術的本質——聽從模式,來調整自己的定義和直觀。」



      我希望上述簡短的說明及引述,多少可以傳達我如何喜愛這一本數學普及著作。事實上,作者罕見的敘事功力,讓本書處處洋溢著極其睿智的洞識,譬如在說明餘弦定律的意義時,拉克哈特就指出:「這個公式告訴我們一件事:角度與長度彼此沒有直接關係;角度必須透過餘弦,來間接傳遞訊息。就好像角度需要一位裝扮成餘弦的律師,代替它們去和長度打交道。角度與長度身處不同的世界,說著不同的語言。正弦和餘弦擔任字典的角色,把角度的語言轉換成長度語言。」我想一般的數學老師大概都能說出上引文字上半部分的含意,但是,下半部分的比喻,恐怕就不那麼容易想得到了。



      其實,拉克哈特針對證明vs.敘事,也有著十分精彩的比喻:「數學證明就像在說故事。題目中的元素就是人物角色,故事情節則由你決定。」這是因為「就像任何一篇文學小說,我們的目標是寫出在陳述上令人信服的故事。」而「在數學上,這表示情節不僅要合乎邏輯,還必須簡明而優雅。沒有人喜歡看拐彎抹角又複雜的證明。我們當然想看到理性的思路,但也希望感受到美的震懾。一個證明應該兼顧美感與邏輯。」



      總之,本書一如作者稍早出版的《一位數學家的嘆息》,十分坦誠且帶有強烈的個人風格。然而,對比前書的教育改革之基進主張,本書完全著重在數學探險之旅的驚喜與樂趣。儘管作者所舉的案例都取自古典數學(尤其是古希臘幾何學),不過,其論述之直指核心,以及敘事之詩意想像,都讓本書成為中學數學普及讀物的上上之選。因此,我要向大學數學通識師生與中學數學師生鄭重推薦本書,當你有機會閱讀本書時,你一定會發現:原來數學可以這樣學習!至於一般讀者呢,接觸本書一定可以體會:你在過往的數學知識活動中,究竟錯過了什麼!




    其 他 著 作
    1. 一堂令人難忘的數學課:如何讓孩子好奇、想學習,走進數學的美麗世界