庫存狀況
「香港二樓書店」讓您 愛上二樓●愛上書
我的購物車 加入會員 會員中心 常見問題 首頁
「香港二樓書店」邁向第一華人書店
登入 客戶評價 whatsapp 常見問題 加入會員 會員專區 現貨書籍 現貨書籍 購物流程 運費計算 我的購物車 聯絡我們 返回首頁
香港二樓書店 > 今日好書推介
二樓書籍分類
 
怎樣解題

怎樣解題

沒有庫存
訂購需時10-14天
4713510945322
波利亞
蔡坤憲
天下文化
2018年4月27日
110.00  元
HK$ 93.5
省下 $16.5
 
二樓書卷使用細則 二樓書卷使用細則





ISBN:4713510945322
  • 叢書系列:科學天地
  • 規格:平裝 / 324頁 / 14.8 x 21 cm / 普通級
    科學天地


  • 自然科普 > 科普叢書











      任何領域的每一個人,都必須學會怎樣解題。



      本書作者波利亞,是數學教育史上極重要的數學教育家,《怎樣解題》可說是流傳最廣、影響最深遠的代表作,自出版以來,已經影響了一代又一代的讀者。在書中,波利亞提出了解題的四大步驟,並且穿插了範例,你可以跟著波利亞的腳步,學會如何從推理與提問,直搗證明題或求解題的核心,而這樣的數學方法,對解決任何問題都有幫助。



      熟讀《怎樣解題》,你就能成為思考、分析、解題的頂尖高手。

    ?


     





    英文版初版序

    初版第七刷序

    第二版序

    「怎樣解題」提示表

    序 康威(John H. Conway)

    前言



    第一部:在教室裡

    目的

    第1節: 幫助學生

    第2節: 提問、建議、心智活動

    第3節: 普遍性第4節 常識

    第5節:老師與學生、模仿與練習

    主要步驟及主要提問

    第6節: 四個階段

    第7節: 了解問題

    第8節: 例子

    第9節: 擬定計畫

    第10節: 例子

    第11節: 執行計畫

    第12節: 例子第

    第13節 驗算與回顧

    第14節: 例子

    第15節: 不同的做法

    第16節: 老師提問的方法

    第17節: 好的提問與壞的提問

    更多的例子

    第18節: 作圖題

    第19節: 證明題

    第20節: 速率問題



    第二部:怎樣解題?一段對話

    認識問題

    進一步了解問題

    尋找有用的好想法

    執行計畫回顧



    第三部 啟發法小辭典

    類比�輔助元素�輔助問題�波爾察諾�靈感�

    你能驗算結果嗎?�你能用不同的方法導出這個結果嗎?�

    你能運用這個結果嗎?�執行計畫�條件�矛盾�系理�

    你能從已知數中找到什麼線索?�你可以把問題重述一遍嗎?�

    分解與重組�定義�笛卡兒�決心、希望與成功�診斷�

    你是否使用了所有的已知數?�你知道什麼相關的問題嗎?�

    畫個圖�檢查你的猜測�圖形�一般化�你以前見過它嗎?�

    這裡有個已經解決過的相關問題�啟發法�啟發式推理�

    如果不能解決眼前的問題�歸納與數學歸納法�發明者的悖論�

    這個解能否滿足所給的條件?�萊布尼茲�引理�仔細看未知數�

    現代啟發法�符號與記法�帕普斯�拘泥與精通�實際的問題�

    求解題與證明題�進展與成就�字謎�歸謬法與間接證法�多餘的�

    例行性的問題�發現的法則�表達風格的守則�教學的守則�

    把條件的各個部分分開�列方程式�進度的象徵�特殊化�潛意識的工作�

    對稱�解題的術語�量綱檢驗法�未來的數學家�聰明的解題高手�

    聰明的讀者�傳統的數學教授�改變問題�未知數是什麼?�

    為什麼要證明?�諺語的智慧�倒推法



    第四部:問題、提示、解答









      《怎樣解題》是很棒的書!早在多年前,當我還是個學生,第一次讀這本書的時候,我就已經知道它是本好書了,但是,我卻花了很久的時間,才真正體會這本書有多麼棒!為什麼會這樣?部分的理由,是因為這本書很特別。在我做學生與當老師的這些年裡,我從來沒有讀過另外一本書,像波利亞這本書的書名所說的,教你怎麼樣解題。荀菲爾德(A. H. Schoenfeld)1987年在美國數學協會(MAA)的期刊發表的文章〈波利亞、解題與教育〉中,正確地描述出這本書的重要性:「在數學教育以及解題的世界裡,本書為兩個時期清楚地畫下了一條界線:波利亞之前的解題活動,與波利亞之後的解題活動。」



      《怎樣解題》是有史以來最成功的數學書。從1945年首次出版以來,銷售已經超過百萬冊,並譯成十七種語言(編注:根據英文版出版社的資料,已經不只十七種了)。波利亞稍後還寫了兩本關於做數學研究這門藝術的書:《數學與猜想》(Mathematics and Plausible Reasoning)(1954)與《數學的發現》(Mathematical Discovery)(共兩卷,1962與1965)。



      這本書的書名,讓它看起來好像只是一本為學生所寫的書,但是事實上,它寫給老師的內容,並沒有比較少。誠如波利亞自己在「前言」裡所說的,本書的第一部,大部分是站在老師的觀點來寫的。



      不過,每個人都因此而獲益。如果是學生來讀這本書,將會「偷聽到」波利亞對書中那位事實上並不存在的老師所給的一些建議,彷彿身旁好像真的有這麼位好老師一樣。這就是我自己讀這本書的感覺,而且很自然地,在我幾年後開始教書時,我發現自己也不斷使用那些我認為重要的建議或意見。



      然而一直到不久前,我有機會重讀此書,而且在讀完之後,我忽然了解到,這本書的價值比我以前所想像的還高!我自己是學生時,波利亞所給的許多意見,感覺並不太有幫助,然而,這些意見現在卻讓我變成一位比較好的老師,知道怎麼去幫助和我遭遇不一樣問題的人。



      顯然,波利亞教過的學生比我多,而他也一直很努力地在思考,在數學的學習上,怎麼樣才能對學生最有幫助。也許,他最重要的觀點是:學習必須是「主動的」。誠如他在某一堂課裡提到的:「數學,不是一門讓人用來觀賞的活動。所謂的『了解』數學,意思是要有能力去『做』數學。什麼叫作(有能力)『做』數學呢?它的第一個意義就是:有能力去解決一個數學問題。」



      我們常說,若要教好某個科目,教的人懂得的「至少得跟他的學生一樣多」。對教數學來說,有一個很弔詭的事實就是:老師還得知道學生可能會產生什麼樣的誤解!如果老師講述的內容,可以用兩種以上的方式來解讀,那麼必然會導致有些學生理解到其中一種,另外的學生各有體會,極好或極糟的情形皆有。



      李特伍德(J. E. Littlewood)舉了兩個有趣的例子,說明我們可能不自覺地就對假設產生誤解。首先,他提到在藍姆(Lamb)的《力學》這本書裡,對座標軸的描述(「因為Ox與Oy是二維平面,所以Oz是垂直的」)是錯誤的,因為藍姆總是蹺著腳坐在椅子上工作!其次,藍姆要求他的讀者畫一條封閉曲線,讓它完全位於某條切線的一側,然後他說,總共只有四種主要不同的可能性(垂直切線的左方或右方,水平切線的上方或下方),而且在沒有圖形解說的情形下,他假定這條封閉曲線位於它的垂直切線的右方,而不知不覺地忽略了另外三種可能性。



      因應這類假定的方法,我想不出有什麼建議比波利亞的更好:在試著解題之前,學生應該要能清楚、明確地展示出自己對問題的理解;最好是有位真實的老師在眼前,否則,也要自己想像有位老師在身旁。有經驗的數學家多半知道,數學研究最難的部分,往往就是不容易很明確地了解問題究竟在說些什麼。碰到這種狀況,他們通常也都遵循波利亞的建議:「如果你不能解決眼前的問題,試著從簡單一點的問題著手:把這個問題找出來。」



      各位除了可以從這本書的內容學到東西之外,應該也會從作者波利亞的生平事蹟,得到很多啟示。



      喬治•波利亞(George Polya)於1887年12月13日生於匈牙利的布達佩斯。他出生時所取的名字是Gyorgy Polya,稍後才略去這些抑音符號。父親是Jakab Polya,母親是Anna Deutsch。由於Jakab、Anna和他們的三個小孩(Jen?、Ilona和Flora)於前一年放棄猶太教而改信天主教,所以喬治一出生就受洗為天主教徒。他們家的第五個小孩(Laszlo)則在四年後出生。



      父親Jakab在喬治出生的五年前,把姓氏從Pollak改成聽起來比較像匈牙利文的Polya,因為他認為,這樣有助於他在大學裡找到工作。他也的確謀得大學裡的教職,但他不幸於1897年突然逝世,所以只在大學裡服務了一段很短的時間。

    小波利亞在中學時期,除了匈牙利文之外,還選讀了希臘文、拉丁文與德文。有點意外的是,他當時對數學並不特別感興趣,與他在文學、地理與其他科目的「傑出」表現相比,他在幾何學方面的表現只能算是「及格」而已。在文學之外,生物學則是他最喜歡的科目。



      他於1905年就讀於布達佩斯大學(University of Budapest)法律系,不過,因為覺得很無聊,所以他很快就轉系了。之後,他取得了教師證書,可以在高中教授拉丁文與匈牙利文;雖然他從來沒有使用過這張教師證書,但這卻是他一直引以為傲的一件事。他之所以最後會學習數學,是因為他的指導教授亞歷桑德(Bernat Alexander)建議他,他應該選讀一些數學與物理的課程,以幫助他在哲學上的學習。後來他曾自嘲說:「我的物理不行,哲學又太好──數學剛好在它們中間。」



      波利亞在布達佩斯大學的物理老師是厄特沃什(Eotvos),數學老師是費耶(Fejer)。1910至1911學年度,他前往維也納大學,受沃廷格(Wirtinger)和梅藤斯(Mertens)兩位老師指導,隨後回到布達佩斯,取得博士學位。隨後的兩年,他大都留在哥廷根;在那裡,他結識了許多數學家,例如:克萊因(Klein)、卡拉泰奧多里(Caratheodory)、希爾伯特(Hilbert)、龍格(Runge)、蘭道(Landau)、魏爾(Weyl)、庫朗(Courant)和托普利茨(Toeplitz)。



      接下來的1914年,他到巴黎訪問研究,並與皮卡(Picard)與阿達瑪(Hadamard)逐漸熟識,並得悉胡維茲(Adolf Hurwitz)幫他在蘇黎士安排了一個工作機會。他接受了這個工作機會,並在稍後寫到:「我之所以會到蘇黎士,是為了能與胡維茲就近一起工作。從我於1914年抵達蘇黎士,一直到他辭世〔1919年〕之前,有六年的時間,我們有緊密的合作關係。我對他印象非常深刻,並編輯他的許多作品。」



      當然,就在此時發生了第一次世界大戰。起初,這對波利亞沒有很大的影響,因為早期的足球運動傷害,他已經申請免除從軍,但是後來戰情吃緊,需要更多的新兵加入戰場,匈牙利政府曾要求他回國從軍,為國而戰。由於他強烈的和平主義觀點,因此拒絕了政府的要求,結果導致他有一段很長的時間被禁止回國;事實上,他一直到1976年才再次回到匈牙利,距離他離開祖國,已經54年了。



      在這段期間,他入了瑞士國籍,並在1918年和瑞士女孩韋伯(Stella Vera Weber)小姐結婚。在1918和1919這兩年裡,他發表了許多篇的數學論文,涵蓋了許多不同的領域,例如:級數、數論、組合數學、投票表決系統、天文學,以及機率學等。他於1920年,升等為蘇黎士的瑞士聯邦理工學院(ETH)副教授。稍後幾年,他與澤果(Gabor Szego)共同出版了《分析中的問題與定理》(Problems and Theorems in Analysis),在亞歷山德森(G. L. Alexanderson)和藍格(L. H. Lange)悼念波利亞而寫的傳記中,把此書描述為「確立他們大師級地位的數學傑作」。



      這本書於1925年問世。之後,波利亞得到洛克斐勒獎學金(Rockefeller Fellowship)並轉往英國工作,在那裡,他與哈地(G. H. Hardy)和李特伍德(J. E. Littlewood)共同合作,成果就是稍後出版的《不等式》(Inequalities,劍橋大學出版社1936年出版)。他利用第二次的洛克斐勒獎學金,於1933年前往普林斯頓大學訪問,當他還在美國的時候,應布利區費爾德(H. F. Blichfeldt)之邀,也到史丹福大學訪問;他非常喜愛史丹福,而史丹福最後也成了他的家。從1943年起,他獲聘為史丹福大學的教授,一直到1953年退休為止,但他繼續授課到1978年,開的最後一門課是組合數學。他於1985年9月7日逝世,享年97歲。



      有些讀者可能會希望知道波利亞在數學上的貢獻。他大部分的貢獻都與分析學有關,但都是非常專門的數學研究,不在數學領域裡的社會大眾,可能難以理解,不過,有些貢獻還是值得在此一提。



      在機率理論裡,現在已經是公定用語的「中央極限定理」(Central Limit Theorem),就是波利亞的貢獻。此外,他也證明出機率測度的傅立葉變換是一個特徵函數,以及證明了在整數晶格中隨機漫步(random walk)的機率接近1,若且唯若其維度的最大值為2。



      在幾何學上,波利亞獨立地再次列舉出17個平面結晶體群(crystallographic groups);首次完成這項工作的人是費多羅夫(E. S. Fedorov),但他的研究工作已經失傳。波利亞還與尼格利(P. Niggli)合作,發展出這些結晶體群的記法。



      在組合數學裡,波利亞的計數定理(Enumeration Theorem)現在已經成為根據對稱性來計數構形的標準方法。里德(R. C. Read)曾把這個方法描述成「一篇非凡論文中的一個非凡定理,也是組合分析(combinatorial analysis)歷史上的重要里程碑」。



      《怎樣解題》是波利亞還在蘇黎士的最後一年(1940年),以德文寫成的。稍後,由於歐洲的情況,他被迫遷往美國。雖然事後證明這本書非常成功,但是在普林斯頓大學出版社於1945年出版它的英文版之前,曾遭到四家出版社的拒絕。透過普林斯頓大學出版社,《怎樣解題》迅速且持續地成為有史以來最成功的數學書籍。

    ?
    (本文作者為康威(John H. Conway),

    英國數學家,美國普林斯頓大學馮諾伊曼數學講座教授,生命遊戲(game of life)發明人)




    其 他 著 作
    1. 蘑菇沙皇
    2. 怎樣解題
    3. 數學發現
    4. 數學與猜想
    5. 怎樣解題