庫存狀況
「香港二樓書店」讓您 愛上二樓●愛上書
我的購物車 加入會員 會員中心 常見問題 首頁
「香港二樓書店」邁向第一華人書店
登入 客戶評價 whatsapp 常見問題 加入會員 會員專區 現貨書籍 現貨書籍 購物流程 運費計算 我的購物車 聯絡我們 返回首頁
香港二樓書店 > 今日好書推介
   
比利戰爭【完整新譯本】
  • 定價117.00元
  • 8 折優惠:HK$93.6
  • 放入購物車
二樓書籍分類
 
特徵工程不再難:資料科學新手也能輕鬆搞定!

特徵工程不再難:資料科學新手也能輕鬆搞定!

庫存=1
將於1個工作天內出貨
9789864344765
Sinan Ozdemir,Divya Susarla
莊嘉盛
博碩
2020年3月31日
173.00  元
HK$ 147.05
省下 $25.95
 
二樓書卷使用細則 二樓書卷使用細則





ISBN:9789864344765
  • 規格:平裝 / 304頁 / 17 x 23 x 1.52 cm / 普通級 / 單色印刷 / 初版
  • 出版地:英國


  • >

















      從資料集識別獨一無二的特徵,

      建構功能強大的機器學習系統!

    ?

      特徵工程(Feature Engineering)是建立強大機器學習系統的首要步驟,也是最重要的步驟。特徵選擇錯誤,甚至可能使得某些機器學習演算法毫無用處。故而特徵工程可說是機器學習的重中之重。本書將帶你了解特徵工程的完整流程,讓機器學習更有系統、更有效率。

    ?

      你將從理解資料(data)開始學習。機器學習模型的成功之處,正是取決於如何利用不同類型的特徵,例如:連續特徵、分類特徵等等。透過理解錯誤分析和模型的可接受性,你將了解何時該納入一項特徵、何時又該忽略一項特徵,以及其中的原因。你還會學習如何將問題陳述轉換為有用的新特徵、如何提供由商業需求和數學見解驅動的特徵,以及如何在自己的機器上進行機器學習,進而自動學習資料中的特徵。

    ?

      適用讀者

      本書適合所有希望全面了解特徵工程的讀者,特別適合具有機器學習應用知識並希望改進機器學習模型結果的資料科學家。讀完這本書,讀者將能精通特徵選擇、特徵學習和特徵最佳化!

    ?

      在這本書中,你將學到:

      ? 識別和利用不同類型的特徵

      ? 清洗資料中的特徵,提升預測能力

      ? 了解為何以及如何進行特徵選擇和模型誤差分析

      ? 利用領域知識建構新特徵

      ? 以數學知識為基礎並交付特徵

      ? 使用機器學習演算法建構特徵

      ? 精通特徵工程與特徵最佳化

      ? 在真實世界的應用程式中利用特徵工程

    ?

      【下載範例程式檔案】

      本書的程式碼是由GitHub託管,可以在如下網址找到:github.com/PacktPublishing/Feature-Engineering-Made-Easy。

    ?

      【下載本書的彩色圖片】

      我們還提供您一個PDF檔案,其中包含本書使用的彩色圖表,可以在此下載:www.packtpub.com/sites/default/files/downloads/FeatureEngineeringMadeEasy_ColorImages.pdf。



     





    前言



    第1章:特徵工程簡介

    激勵人心的例子:AI驅動的聊天系統

    特徵工程的重要性

    特徵工程是什麼?

    機器學習演算法和特徵工程的評估

    特徵理解:我的資料集裡面有什麼?

    特徵改進:清洗資料集

    特徵選擇:對壞屬性說不

    特徵建構:我們能建置全新的特徵嗎?

    特徵轉換:數學登場囉!

    特徵學習:以AI促進AI

    小結



    第2章:特徵理解:我的資料集裡面有什麼?

    資料結構的有無

    非結構化資料的例子:伺服器日誌

    定量資料和定性資料

    資料的4個等級

    資料等級總結

    小結



    第3章:特徵改進:清洗資料集

    識別資料中的遺漏值

    處理資料集中的遺漏值

    標準化和常態化

    小結



    第4章:特徵建構

    檢查資料集

    填補分類特徵

    編碼分類變數

    擴展數值特徵

    針對文本的特徵建構

    小結



    第5章:特徵選擇

    在特徵工程中實現更好的效能

    建立基準機器學習管線

    特徵選擇的類型

    選用正確的特徵選擇方法

    小結



    第6章:特徵轉換

    維度縮減:特徵轉換、特徵選擇與特徵建構

    主成分分析

    scikit-learn的PCA

    中心化和縮放對PCA的影響

    深入解釋主成分

    線性判別分析

    LDA與PCA:使用鳶尾花資料集

    小結



    第7章:特徵學習

    資料的參數假設

    受限玻爾茲曼機

    伯努利受限玻爾茲曼機

    在機器學習管線中應用RBM

    學習文本特徵:詞向量

    小結



    第8章:案例分析

    案例1A:臉部辨識-使用JAFFE

    案例1B:臉部辨識-使用Olivetti Face

    案例2:預測飯店評論資料的主題

    小結





    其 他 著 作