至於無限集合之(可)比較(本書第四章),也是抽象思維的一個極為有趣的案例。在其推論過程中,吾人運用簡單可行的抽象思考去掌握模式,就可以讓不可見的世界現身(making the invisible visible)。再有,本書pp. 37-45所介紹的思想實驗(thought experiment)及其例子,譬如「小約翰的思想實驗──環遊世界」、「伽利略的帆船實驗」,以及「愛因斯坦的火車實驗」,都足以說明「思想實驗就是一種抽象思考的方法。它允許我們在想像中檢驗假設或者理論,而不是在實驗室中。」事實上,上述後兩個實驗是科學史上最偉大的兩個案例,對於近代物理學的發展,發揮了巨大的作用。
對於一般讀者或科學文化消費者而言,上一段三個「思想實驗」所涉及的「抽象程度」,實際上遠遠不及本書所介紹的群論(group theory)。在本書第十章(最後一章)「代數系統」中,作者簡要說明「同構」(isomorphism)之意義:「一些群或許表面上看起來並不相同。如果任意兩個群有相同的代數結構(algebraic structures),則它們在實質上是相同的。」他進一步引進「同態」(homomorphism)之概念及其用途:「在群論中,同態的主要用途就是創造一個函數例如φ:A→B ,使得我們可以藉由觀察像或對應域(domain)A的可能。就像是透過實物的照片來推論真正的實物一樣。」還有,他更輔以漫畫點出「同態的核」(the kernel of the homomorphism)之意義:「同態的核,就是對於一幅景象,從不同的觀點來看,會發掘到不同的特徵。」這顯然涉及敘事(narrative)中的比喻(metaphor)之運用,作者的「圖解」難免讓人意猶未盡,希望有心的讀者自行發揮創意。