「作者完美呈現監管單位觀點、風險管理、可解釋性與其他諸多主題的概觀,同時提供實務建議與程式碼範例。」
—Christoph Molnar
Interpretable Machine Learning作者
「使用獨特戰術處理方式,解決ML系統風險,讓本書脫穎而出。透過細微差異的處理降低ML風險,為讀者提供寶貴資源,以負責任又可持續的方式成功佈署ML系統。」
—Liz Grennan
Digital Trust, McKinsey&Company初級合夥人暨全球事務共同領導者
過去十年,見證了人工智慧與機器學習(AI/ML)技術的廣泛採用。然而,疏於監督這些廣泛實施的技術,導致原本可由適切風險管理來避免的事故與不良後果。在認識AI/ML真正的好處前,從業人員必須瞭解如何降低風險。
本書說明負責任AI的處理方式:建立在風險管理、資安、資料隱私上,並套用社交科學的最佳實作,提升AI/ML技術、商業程序與文化能力的完整框架。作者Patrick Hall、James Curtis與Parul Pandey創作了這本指南,以期能協助企業、客戶與大眾改善真實世界AI/ML系統結果的資料科學家。
•學習完整涵蓋可解釋性、模組驗證與除錯、偏見管理、資料隱私與ML安全性的負責任AI技術處理
•學習如何建立成功的、有影響力的AI風險管理實作
•對採用AI技術的現有標準、法律與評估方式有基本瞭解,包括近期的NIST AI Risk Management Framework
•使用GitHub與Colab的互動式資源