序
結構方程模型(structural equation model, SEM)結合了傳統統計學上的因素分析與路徑分析技術,是一種運用假設檢定技術,而對有關現象的內在結構理論,進行分析的一種統計方法。結構方程模型除了可以處理觀察變數與潛在變數以及各潛在變數之間的關係外,同時也考慮了誤差變數的問題。而一般我們所常用的統計方法如迴歸分析、主成分分析、因素分析、路徑分析及變異數分析等,其實都可看成是結構方程模型的特例。因而,結構方程模型的本質上即都具有上述統計方法所無法比擬的優點。也正因為如此,近年來,結構方程模型在心理學、教育學、管理學以及行為科學等領域中,都能被廣泛的應用。
回顧過去幾年,個人在學習與運用結構方程模型的過程中,遭遇到不少困境,也因而走了不少冤枉路。有鑑於此,後學本著從實務面學習結構方程模型分析的初衷,而編寫本書。期盼有心學習結構方程模型分析的研究者能更簡單、更有效率的理解其概念並運用於實際的論文研究中。相信對於初次接觸結構方程模型的初學者而言,皆能透過書中實際的論文範例而理解結構方程模型的基本概念並學會運用SmartPLS執行結構方程模型分析的過程。
過往,以共變數為基礎的結構方程模型(CB-SEM)發展已相當成熟(運用Amos、Lisrel、EQS等軟體來執行),且應用在許多科學領域,大眾較為熟悉。但CB-SEM在實務應用時仍有許多的限制(如常態性要求、須大樣本等),故近期有不少研究者紛紛改用PLS-SEM來發展、驗證模型(以SmartPLS軟體執行),且似有後浪推前浪之勢。因此本書也將聚焦於偏最小平方法結構方程模型(PLS-SEM)的原理與運算、統計特性與應用,以及其優勢和限制。
本書特別適用於需進行學術論文寫作或個案專題者,另外亦非常適合於教學單位授課時使用。其內容幾乎涵蓋了一般論文或專題中,運用結構方程模型時,所需用到的各種分析方式,諸如:收斂效度檢驗、區別效度檢驗、潛在變數的路徑分析、中介變數檢驗、多群組結構方程模型分析與干擾變數檢驗等。而且書中幾乎所有的範例都是實際碩士論文的原始資料與分析結果,期盼讓讀者能身歷其境,融入研究之情境中。本書得以順利出版,首先感謝五南圖書公司的鼎力支持與協助,其次感謝對我容忍有加的家人以及默默協助我的同事、學生。由於編寫時間倉促、後學水準亦有限,錯誤之處,在所難免,敬請批評指正,後學不勝感激!
?
陳寬裕
謹識於 屏東科技大學休閒運動健康系
pf.kuan.yu.chen@gmail.com
2018年7月