庫存狀況
「香港二樓書店」讓您 愛上二樓●愛上書
我的購物車 加入會員 會員中心 常見問題 首頁
「香港二樓書店」邁向第一華人書店
登入 客戶評價 whatsapp 常見問題 加入會員 會員專區 現貨書籍 現貨書籍 購物流程 運費計算 我的購物車 聯絡我們 返回首頁
香港二樓書店 > 今日好書推介
   
比利戰爭【完整新譯本】
  • 定價117.00元
  • 8 折優惠:HK$93.6
  • 放入購物車
二樓書籍分類
 
將大數據由「潮流」化為「營收」的8個法則:由理論落實到工作現場

將大數據由「潮流」化為「營收」的8個法則:由理論落實到工作現場

沒有庫存
訂購需時10-14天
9789861304366
高橋範光
蔡姿淳,鄭睿芝
財經傳訊
2019年8月02日
93.00  元
HK$ 79.05  






ISBN:9789861304366
  • 叢書系列:SENSE
  • 規格:平裝 / 192頁 / 14.8 x 21 x 1 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣
    SENSE


  • 商業理財 > 電子商務 > 網路行銷/趨勢商機











    《排除妄想的大數據實踐術》全新封面版

    為什麼「大數據」是史上最常被打搶的熱門技術!

    為什麼專家得到的結論,到了實務現場卻根本行不通?

    本書不討論資訊技術,只是用大量的例子告訴你,

    該如何讓大數據在你的公司產生真正的效果!



      一家日本的餐廳想知道增加熟客的來店比率是否有助於提升業績!公司總部的大數據專家把熟客的定義為一周來店三次的客人。打算對他們推出促銷方案,但是實際進行時發現一周來店三次的客人根本沒有幾個,於是只好改變熟客的定義!



      一家公司聘用了外部的資料科學家,來進行資料分析,得到的結果興沖沖的和現場的銷售人員分享!但對方的回應是:你的資料有問題,和現況完全不符!



      由於大數據是科技浪潮的代表性名詞,因此大家對它的作用存在很大的幻想,期望它對公司產生快速而巨大的影響。



      當你聽到大數據在行銷領域的運用,是不是想到類似「啤酒」與「尿布」的例子?公司檢視來自網路及實體通路收銀機的銷售資料,發現買尿布的男客人,同時買啤酒的機率很高。因此公司立刻通知通路人員,把尿布與啤酒放在一起,營業額於是快速成長。



      很可惜,企業在大數據的運用上,立竿見影的發現很少出現,要透過層層的梳理,才可以找到有效的運用。因此在利用大數據的過程中必須處理一連串的問題,化解一連串的迷思才能替公司帶來實際的效果。



      而且,大數據的用途多半相對平實。日本軟銀(SoftBank)的電信服務,在95%以上的區域通訊良好,但是少數地方會傳回通訊不良的訊號,於是公司針對極少數通訊不良的地方進行改進,最後在同業中,因為這些小幅的改進而贏得更高的滿意度。



      同樣的,日本著名的旋轉壽司店,利用食品在轉盤上行進的距離,來決定新鮮度,再配合來店客數,預估大約15分鐘後可能的點餐量,並據以出餐,同時滿足成本及品質控制。



      幾年之內,全球會有500億部可以連網的終端設備。不斷由賣場、辦公室,甚至是噴射引擎內部傳送訊息,讓大數據的分析具有3V的特徵(Volume:大量;Variety:多樣性;Velocity:即時)。不過在資料運用處於核心的人類對如何利用大數據來提升營運效率,卻還沒有準備好。



      以下情況充斥於企業界,讓大量的數據無法對公司的營運產生效用:

      1 認為只要蒐集資料數據就能搞定一切。

      2 要追求與眾不同的事實、新奇的發現。

      3 只看數據,不去看現場狀況。



      而本書則以明確的模式及具體的案例,告訴你如何把大數據由「雲端」的天上拉回人間的「收銀機」。



    本書特色           



      ◆從尖端趨勢到實務操作全說明:


      物聯網(IoT)的發展將對企業營運產生重大的影響,預估全球將有500億個終端連網裝置運行。如果電力問題可以克服,那麼日本的工具機廠商,可以立刻獲得銷售往全球各地機具的使用情況,有那些零件要更換;德國則據以發展工業4.0,即在德國本土,以無人工廠,大量客製化生產產品;氣象預報可以每平方公里為預報單位,每幾分鐘就更新數據。而連鎖店則可以隨時得知店內有多少顧客上門、待了多久、有多少人沒有買東西。



      除了最先進的技術發展,本書也說明在大量資訊產生時,如何利用資訊產生有助於提升營運績效的具體做法。包括「活用計畫專案」與「定型化專案」兩個階段。活用計畫專案是以資料科學家為中心,為了達成目的而蒐集、分析數據,再導出成為結果的啟發專案。其過程包括樣本的假設成立、數據的蒐集、假設驗證、樣本的最終確定(得出對策)。「定型化專案」則是以「活用計畫專案」得到的啟發為基礎,在事業現場實施對策並創造成果的專案。其分為對策的導入和監控成果兩個部分。



      ◆用實際案例來說明大數據運用的過程:

      本書用完整的案例來說明大數據研究及運用的過程。其中一個案例為在商店街展店的餐廳「定食屋change」。



      「定食屋change」的漢堡定食是店內固定的熱門菜單,另外也提供數種午餐菜單。由於會有假日的營業額比平日差的情形,該店的目標是「要設法增加平日午餐的營業額」。因此,定食屋change的店家利用每日點餐明細的資料而開始活用大數據。



      於是,立刻開始進行「大數據活用計畫專案」。成立假設、活用可能取得的數據、進行各種分析的結果,發現了「連續兩天來吃漢堡定食的所有客人,隔天都不會來店裡消費」的傾向。



      這是以前從未注意到的新發現,從這個結果中就能知道「如果針對連續兩天吃漢堡定食的客人,設法讓他們隔天也來消費的話,就能確實增加營業額」。因此,可以說「大數據活用計畫專案」暫時是達成目標了。



      雖然「大數據活用計畫專案」本身是順利結束了,但這時候其實尚未出現成果。這是因為要在現場實踐的「讓連續兩天來吃漢堡定食的客人,隔天也會來店」的對策還沒有落實。因此,要落實對策付諸實踐、檢驗成果的就是「大數據定型化專案」。這個專案所進行的就是「導入和監控」以及「成果」這兩項。



      例如,以「定食屋change」的情形來說,如果沒有決定要如何辨別「連續兩天吃漢堡定食的人」,以及如何應對的話,那麼這個對策就無法運作。因此,如何辨別「連續兩天吃漢堡定食的人」、如何促使目標顧客隔天來店消費,還有如何掌握實際上連續3天來店的人、在結帳時該如何應對等,這些事項都要一一給予定義。而且,在掌握到進行此對策的成果之前,都是屬於這個專案的範圍之內。



      本書以具體的步驟來說明大數據研究的運用,讓讀者可以確實遵循。



      ◆全面的實作經驗分享,讓你少走冤枉路:

      由於大數據的運用成為風潮,因為形成許多新的專業工作,如分析資料的「資料科學家」,由於許多企業沒有相關的專業人士,因此常常用外聘的方式進行。這些外聘人士往往與公司內部人士,特別是現場人員的溝通不足,因此取得的研究往往無法推動。為了避免以上問題發生,本書建議在組成大數據相關專案時,要將現場的人員納入聽取其意見。



      而在許多大數據方案的進行過程中,大家都會有以下的看法:如果只是用數據來證明「大家都能感受得知的事實」,就談不上有什麼價值。但是,假如對大數據抱持過度幻想,想盡辦法要找出「無法找到的事實」,就會步上一條辛苦的道路。



      作者指出大數據並不是要強行從數據中找出在工作現場大家都感受不到的傾向,而是要證實現場的專家或老手等一部分的人所感受得知的傾向。也就是說,要將內隱知識(tacit knowledge)變成外顯知識(explicit knowledge)。面對數據分析時如果沒有瞭解這一點,就只會白白浪費時間了。



      本書作者輔導過大量企業進行大數據的研究,在本書中分享他們的迷思與經驗,讀者不必重蹈覆轍。

    ?


     





    前言



    序章 大數據從熱門話題邁向「活用」的階段


    0-1 利用大數據能夠做什麼?

    0─2 大數據帶給我們瑰麗色彩的未來!?

    0─3 要思考的並非「做或不做」,而是「如何去做」



    第1章 理解大數據這項「工具的特性」

    1-1 為什麼大數據會受到注目呢?

    1-2 大數據的3個「V」

    1-3 將大數據當成工具——第四個「V﹙Value價值﹚」

    1-4 圍繞著大數據的社會環境

    1-5 熟練運用工具的「資料科學家」



    第2章 大數據的活用要以「目的」為前提

    2-1 無法順利活用大數據的3個模式

    2-2 沒有目的的大數據計畫就無法順利進行

    2-3 向『魔球Moneyball』學習活用大數據的重點

    2-4 在商業上活用大數據的4種模式

    2-5 利用大數據開展「新經濟」

    2-6 「增加銷售額」是活用大數據的第一步

    2-7 大數據也有助於「提升品質」或「降低風險」



    第3章 活用大數據的進階方法

    3-1 理解活用大數據的兩種設計

    3-2 設計大數據活用計畫的程序

    3-3 設計大數據固定化的程序

    3-4 小動作串聯出大成果



    第4章 活用大數據邁向成功的8個法則

    4-1 大數據是工具,而非目的

    【更深入的認知】大數據與IoT、Industrie4.0

    4-2 「創意」是從資料中啟發而生

    4-3 過度「深信不疑」就會分析錯誤

    4-4 為了正確掌握實際情況,就得組合複數的資料

    4-5 資料的查證不能只做一次就結束

    【interview 1】資料的假說驗證當然要經過不斷的嘗試和錯誤

    國際大學國際交流中心(GLOCOM)準教授中西崇文先生

    4-6 大數據的關鍵就在細節處

    4-7 除了分析,還要串聯現場的行動才能產生成果

    【interview 2】分析與成果是兩回事

    GiXo股份有限公司CEO網野知博先生

    4-8 傾聽現場的聲音,打動現場並持續進行

    【interview 3】將現場想知道的數據可視化

    akindo sushiro股份有限公司情報系統部長田中覺先生



    第5章 透過大數據的活用,我們的生活會如何改變

    5-1 持續活用大數據的未來會是什麼樣貌

    5-2 大數據的活用在協調社會中能展現豐盛成果

    【interview 4】將大數據當成表演

    Rhizomatiks Research真鍋大度先生

    結語

    參考文獻



    ?





    前言             



      大約從2011年出現「大數據」(Big Data)這個關鍵字以來,到目前為止,已經有許多和「大數據」相關的書籍出版上市。



      在這段期間,大數據成了掀起熱潮的流行術語,被說成像是不可思議的魔法棒,和「大數據」有關的各類新聞幾乎每天都在報導,另一方面也逐漸開始進行了實際具體的議論。



      然而,深入探討這議論的人還是少數,也一直處於認知度不高的狀態。而且,積極致力於應用大數據的企業也不多。至今蔚為話題、也被稱為魔法棒的「大數據」,為什麼活用它的企業會如此少呢?



      「因為資料的分析相當困難」,有人會提出這樣的意見吧,或許也有意見認為「並不保證一定成功,所以才無法全力進行」。



      的確,雖然出現了許多論及大數據的概念或事例的書籍,或是針對各種統計分析手法與實踐應用而寫的書籍,但卻很少有寫到「資料分析是簡單的」、「只要努力進行就必定成功」的著作。



      事實上,大數據並不是魔法棒。但是,它的確是非常有效的工具。這項工具雖然在用法上需要耗費不少功夫,但只要能完整地善加運用就一定可以獲得成果。而且,隨著技術的進步,這項工具還能提供從適合初學新手到適合高階使用者的各種多元選擇。



      筆者參與過許多為了培養從事大數據專案人才、資料科學家(data scientist)而舉行的演講或研討會,在本書中,就是根據累積至今的登台演說經驗,整理出在具體進行活用大數據方面容易陷入的錯誤要點,以及如何成功的know how祕訣。



      為了能讓更多人對大數據抱持關注、努力加以應用,因此書內記載的是以進行程序或方法的理解說明為主,完全不會出現任何計算公式。



      那麼,接下來就開始進入大數據的世界吧。

    ?
    筆者




    其 他 著 作