庫存狀況
「香港二樓書店」讓您 愛上二樓●愛上書
我的購物車 加入會員 會員中心 常見問題 首頁
「香港二樓書店」邁向第一華人書店
登入 客戶評價 whatsapp 常見問題 加入會員 會員專區 現貨書籍 現貨書籍 購物流程 運費計算 我的購物車 聯絡我們 返回首頁
香港二樓書店 > 今日好書推介
二樓書籍分類
 
圖解數學

圖解數學

沒有庫存
訂購需時10-14天
9789571195148
吳作樂
五南
2018年1月28日
100.00  元
HK$ 95
省下 $5
 
二樓書卷使用細則 二樓書卷使用細則





ISBN:9789571195148
  • 叢書系列:圖解系列
  • 規格:平裝 / 232頁 / 17 x 23 cm / 普通級
    圖解系列


  • 專業/教科書/政府出版品 > 數理化類 > 數學

















      ★認識數學與社會、音樂、繪畫之關聯。

      ★以歷史人文來說明數學演進。

      ★以圖表方式來幫助理解數學。




      數學被大多數人認為困難,並會問為什麼學數學?有用在哪裡?該如何學習?從人類學習的模式來看,以藝術領域中最抽象的音樂為例,我們是先學會唱歌再學五線譜。所以我們的方法是「先學唱歌,再學樂理」,先看圖再看數學式,先看歷史、人文、藝術、應用,再來討論數學。進而減少背一大堆公式的必要及大量的機械式練習,重建對數學學習的信心和興趣。



      本書是敘述數學之美的書,而非說數學多有用。數學常被誤解為是自然科學的一支。數學固然是科學語言,但數學本質較接近藝術。本書從人類文明發展的脈絡說明數學的本質:它像藝術一樣,是人類文化具想像力及美感的一部份。並且是學習民主的不二法門,培養邏輯唯一的道路。並可以發現數學史就是人類發展史,數學發展到哪,世界就進步到哪。



      本書不同以往的數學教材,沒有大量的計算,富含人文、社會、歷史、音樂、繪畫、應用的整合,內容精簡、實用,適合做為數學通識課程的教材。

    ?


     





    前言



    第1章 西元前

    1-1 認識各古文明的數字(一):埃及

    1-2 認識各古文明的數字(二):巴比倫與馬雅

    1-3 認識各古文明的數字(三):中國

    1-4 符號念法與用途(一)

    1-5 符號念法與用途(二)

    1-6 黃金比例

    1-7 永遠跑不完的一百公尺

    1-8 圓錐曲線(一):拋物線I

    1-9 三角函數(一):三角函數的由來

    1-10 三角函數(二):河流有多寬

    1-11 三角函數(三):山有多高

    1-12 三角函數(四):地球多大、月亮多遠

    1-13 三角函數(五):日蝕、月蝕

    1-14 三角函數(六):地平線多遠

    1-15 三角函數(七):山有多遠

    1-16 畢達哥拉斯(一):畢氏定理與根號

    1-17 畢達哥拉斯(二):音階的由來

    1-18 阿基米德(一):第一個重要的無理數-圓周率π

    1-19 阿基米德(二):圓椎、球、圓柱的特殊關係

    1-20 阿基米德(三):密度的前身-排水法

    1-21 阿基米德(四):密度



    第2章 中世紀

    2-1 認識各古文明的數字(四):印度、阿拉伯、羅馬 

    2-2 中世紀的數學:阿拉伯、印度 

    2-3 為什麼負負得正呢? 

    2-4 指數(一):神奇的河內塔.棋盤放米 



    第3章 文藝復興時期

    3-1 小數點、千記號的由來 

    3-2 數學運算符號的由來 

    3-3 椎體是柱體體積的3分之1倍 

    3-4 納皮爾的對數 

    3-5 笛卡兒的平面座標 

    3-5 笛卡兒的平面座標 

    3-6 太極圖是極座標作圖 

    3-7 認識地圖-非洲比你想像的大很多 

    3-8 數學與藝術(一):投影幾何 



    第4章 啟蒙時期

    4-1 曲線下與x軸之間的面積-積分 

    4-2 曲線上該點斜率-微分 

    4-3 為什麼稱微積分 

    4-4 第二個重要的無理數:尤拉數e??  

    4-5 圓錐曲線(二):拋物線II 

    4-6 圓椎曲線(三):橢圓I 

    4-7 圓椎曲線(四):橢圓II 

    4-8 圓椎曲線(五):雙曲線 

    4-9 圓椎曲線(六):圓錐曲線怎麼繪畫 

    4-10 特殊的曲線(一):懸鍊線 

    4-11 特殊的曲線(二):等時降線與最速降線 

    4-12 為什麼角度要改成弧度(一):弧度的起源 

    4-13 為什麼角度要改成弧度(二):為什麼 180度=π 

    4-14 神奇的帕斯卡三角形 

    4-15 數學與音樂(一) 





    前言



      大多數人認為數學等於困難,並且會問為什麼學數學?數學有用,有用在哪裡?生活中充斥著數學,但又在哪裡?我們必須知道數學是科技進步的重要一環,但數學更是人類文明重要一環。而我們要如何學好數學?從人類學習的模式來看,以藝術領域中最抽象的音樂為例,我們到底是先學會唱歌(或聽音樂),還是先學會看,寫五線譜?無庸置疑,當然是先會唱歌或聽音樂。以及我們在其他科目都是先學該科目的藝術面,再學習學術面,如國文課先賞析再解釋、歷史先聽故事再研究。但是我們的數學教育卻是順序顛倒:要學生花最多時間學會看,寫五線譜(列式子,背公式,解考題),卻很少給學生唱歌或聽音樂的時間(看到數學,看到活生生的應用)。因此我們的方法是 "先學唱歌,再學樂理",先看圖再看數學式,先看歷史、人文、藝術、應用,再來討論數學。進而減少背一大堆公式的必要及大量的機械式練習,重建對數學學習的信心和興趣。此方法已在教學實踐中證明是有效的。



      本書是敘述數學之美的書,而不是敘說數學多有用的書。數學是一門最被人們誤解的學科,它常被誤認為是自然科學的一支。事實上,數學固然是所有科學的語言,但是數學的本質和內涵比較接近藝術(尤其是音樂),反而與自然科學的本質相去較遠。本書從人類文明發展的脈絡來說明數學的本質:它像藝術一樣,是人類文化中深具想像力及美感的一部份。並且是學習民主的不二法門,培養邏輯唯一的道路。並且可以了解後,可以發現數學史就是人類發展史,數學發展到哪,世界就進步到哪。



      為何會對數學誤解?其原因大致如下,我們的制式數學教育只注重快速解題,熟記題型以應付考試的需求,造成學生及家長對數學的刻版印象就是:一大堆作不完的測驗卷及背一大堆公式。在這種環境下,如何能期待多數的學生對數學有學習的動機和興趣?其結果是,用功的學生努力背題型,背公式以得到好成績,考上名校。就業後,除了理工科系外,其他人發現生活上只要會加減乘除就夠用了,以往多年痛苦的學習顯然只是為了考試,數學不但無趣也無用。至於沒那麼用功的學生早在國中階段就放棄數學了。因為就投資報酬率而言,數學要花太多時間,且考試成績未必和時間成正比,將這些時間用在別的學科比較有效益。



      更糟的是,我們的社會謬誤將數學好不好和聰不聰明劃上等號。固然,數學很好的學生顯示他對抽象概念掌握能力不錯,僅此而己,不多也不少。至於數學不好的學生也只顯示他的抽象概念掌握能力有待加強,與聰明度無關。請問,我們會認定一個五音不全(音感不佳) 的人就是不聰明嗎?



      此外,我們的教材有很大的改進空間。譬如說,專為考試設計的"假"應用題,然而最糟糕的是:為了在短時間內塞進太多內容,教材被簡化成一系列的解題技巧和公式。



      事實上,數學絕對不是一系列的技巧,這些技巧不過是一小部份,它們遠不能代表數學,就好比調配顏色的技巧不能當作繪畫一樣。換言之,技巧就是將數學這門學問的激情,推理,美和深刻內涵抽離之後的產物。從人類文明的發展來看,數學如果脫離了其豐富的文化內涵,就會被簡化成一糸列的技巧,它的真實面貌就被完全扭曲了。其結果是:對於數學這樣一門基礎性的,富有生命力,想像力和美感的學科,大多數人的認知是數學既枯燥無味,又難學又難懂。在這種惡劣的學習環境及社會謬誤的影響下,學生及父母親或多或少都會產生數學焦慮症( Mathematics Anxiety)。這些症狀如:



      (1) 考前準備這麼多,為何仍考不好?是不是題目作得不夠多?



      (2) 數學成績不好,是否顯示我不夠聰明,以後如何能出人頭地?



      (3) 除了交給補習班及名師之外,有沒有其它方法可以學好數學,不再怕數學, 甚至喜歡數學?



      數學焦慮症不是一天造成的,因此它的"治療"也要循序漸進。首要是去除對數學的誤解和恐懼,再服用"解藥"(新且有效的學習方法、教材)。本書說明數學影響及於哲學思想和推理方法,塑造了眾多流派的繪畫和音樂,為政治學說和經濟理論提供了理性的依據。作為人類理性精神的化身,數學己經滲透到以前由權威,習慣,迷信所?冶的領域,而且取代它們成為思想和行動的指南。然而,更重要的是,數學在令人賞心悅目和美感價值方面,足以和任何藝術形式媲美。因此,我深信應該將數學的"非技巧"部份按歷史發展的脈絡納入教材,使學生感受到這門學科之美,從而啟發學習的動機。使得學生能大幅降低對數學的恐懼,增加信心,進而體會數學之美。同時,也因為更有自信,就能更有效率地學習"技巧"部分,大幅減少機械式的技巧練習,面對考試可以少背公式仍能得高分,澈底消除學生和家長的"數學焦慮症"。




    其 他 著 作
    1. 圖解機器學習、人工智慧與人類未來
    2. 數學不好不是你的錯
    3. 什麼是數學?
    4. 圖解統計與大數據(2版)
    5. 你沒看過的數學(3版)
    6. 圖解向量與解析幾何
    7. 台灣人一定要懂的邏輯
    8. 你沒看過的數學(2版)
    9. 圖解統計與大數據
    10. 你沒看過的數學
    11. 圖解數學
    12. 互動及視覺微積分
    13. 互動及視覺微積分
    14. 國中數學贏在起跑點
    15. 國中數學基測詳解(下)
    16. 國中數學基測詳解(上)
    17. 想問卻不敢問的數學問題